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ABSTRACT 

 

Millions of accidents take place every year due to drunk and distracted driving. The cause of 

these accidents is human negligence. To avoid this and to make roads safer there is a need to make 

vehicles autonomous. This will also aid the physically impaired and the elderly. These intelligent 

vehicles should be able to take decisions and navigate on road precisely without the aid of human 

assistance. Several multinational companies like Google and Tesla have been investing efforts into 

developing such autonomous vehicle systems with robust algorithms. In this project, a prototype of 

an intelligent self-driving vehicle was developed with a variety of machine learning algorithms. This 

prototype was developed on a Raspberry Pi and has been able to predict the direction and control 

the vehicle based on these decisions. The prototype has also been trained to detect and obey traffic 

signs and navigate by avoiding obstacles. To achieve this, the images of a track collected from a Pi 

camera were used to train different models of neural networks and the performance of each model 

was tested. An optimal model of neural network was then used to process images collected by the Pi 

to control the wheels of a motor car. Ultrasonic sensor module aids the vehicle to detect and halt on 

the occurrence of any obstacle. Haar cascade classifier based stop sign detection signals the vehicle 

to stop. The results from this project will provide an insight on the various learning algorithms best 

suited for this application which can also be extended to other applications in the areas of industrial 

and home automation. 

 

INTRODUCTION 

Ever since the development of cars, autonomous driving has been of great interest and an 

even greater challenge to achieve in the field of Intelligent Transportation Systems [8]. With the 

evolution of technology, driverless vehicles are no longer a distant reality. Companies like Ford, Tesla 

and Mercedes [26] are already testing their prototypes on road. A major portion of their success is 

attributed to the boom in the field of machine learning and artificial intelligence. The development 

of autonomous driving dates back to the 1500’s with Leonardo Da Vinci’s Self-propelled cart, a cart 

which could move on its own through a known path. This was achieved through high tension springs. 

Over the years, the level of autonomy in vehicles has increased progressively. The National 

Highway Traffic Safety Administration (NHTSA) of the United States has come up with six levels of 

autonomy, starting from fully manual to fully autonomous [17]. The zeroth level is the no autonomy 

level wherein the driver performs all the manoeuvring tasks. The first level is the Driver Assistance 

where few features are provided to assist the driver. The second level is the Partial Automation, 

where acceleration and steering are partially automated. However, the driver must remain engaged 

with the steering as well as monitoring the environment. The next stage is Condition Automation. In 

this level, the driver need not monitor the environment; however with notice or alarms, he must be 

able to take in-charge of the steering. The fourth level is the High Automation Level in which the 

driver can choose to manually or autonomously control the vehicle. The fifth and the final level is the 

fully autonomous level, in which the vehicle can be driven with no assistance in all conditions of 



road, weather and environment. 

The major cause of such an increased interest in autonomy is because of the number of 

accidents that happen every year due to drunk and distracted driving. Autonomy increases safety 

and ensures reduced rates of crimes. This also enhances the mobility for children, disabled and the 

elderly. It reduces the amount of time and energy spent on transportation, thereby increasing the 

efficiency of work and quality of life in individuals. They could serve as wonderful highway goods 

carrying trucks where there is less traffic and the routes are known in prior. Mobility as a service 

could also utilize the benefits of autonomous cars thereby increasing public transportation. This 

reduces the number of vehicles owned by individuals which in turn produces better flow of traffic, 

less congestion, lesser need of parking spaces and lesser pollution. In short, the boom of 

autonomous driving can provide a multitude of benefits to the world. 

It is also to be remembered that there are several obstacles in achieving autonomous 

driving. One of the major obstacles is the potential hacking of the driving systems. Security must 

thus be given an important priority in designing these vehicles. Another major obstacle is 

maintenance cost of the sensors and peripherals which could potentially be damaged due to 

environmental changes. In countries like India, there is a major need to change the infrastructure of 

the roads for these vehicles to navigate smoothly. However companies like Mahindra are making use 

of the structured environments in farming to introduce autonomous driving functions. [3] 

While the major application of self-driving vehicles is in the field of road transportation, the 

same machine learning technology can be altered to meet different automation needs in industries. 

Robots can be made to sense their environment and navigate in factories and can even control the 

machineries based on the needs. The potentiality of this technology is vast and is expected to bring a 

huge impact in the future by making a majority of physically and mentally intensive tasks easier. If 

full autonomy is not desired, intelligent assistive features can be provided. 

 

 

Fig 1 A Google Waymo car 

Companies like Tesla and Google have invested millions into research and development of 

self-driving cars. In 2009, Google started the development of their self-driving car, ‘Waymo’. By 2013, 

Waymo had travelled around 2 million miles in the US with only one reported accident. By this time 

other leading car companies like Nissan, Ford, Benz, BMW had launched themselves into the self-

driving technology. The first major setback which speculated the safety and ethicality of the 



autonomous vehicles was brought by a fatality during the testing of Tesla’s Autopilot. However, 

companies are still confident with the potentiality of these vehicles and claim that such incidents 

can’t be compared to the enormous benefits such vehicles bring. [15] Audi is claimed to be the first 

company which will provide Level 3 autonomy in its A8 model. Fig 1 shows a Google Waymo car 

which is currently under testing phase. 

 

LITERATURE SURVEY 

Driver assistance systems have been implemented in vehicles to provide safe, easy and 

improved driving experience. Automated driving systems have emerged as the result of rapid 

advancements in drive assistance technologies and machine vision algorithms over the past few 

years [11]. Kichun Jo et al [6] have provided a detailed description of the components and 

comprehensive instructions for the design and real time implementation of autonomous vehicle. 

Their work also addresses the several advantages of using a distributed system over the centralized 

architecture. Their proposed system has achieved significant improvements in system safety, 

computational load distribution and flexibility of the system against to changes or extensions. 

However, their work fell short of its capability to work with software platforms other than windows. 

The intelligent vehicle takes into consideration of several inputs before making any decision. 

This methodology explained by Hyunggi Cho et al [2] throws light on multi sensor fusion system 

which integrates a multitude of sensors like LIDAR, radar, Camera etc. The results of their work 

shows that the model was able to predict and track better by responding to the threshold value set 

by several inputs instead of one input. The cameras in the smart vehicles function just like the eyes 

of a human driver to facilitate the continual monitoring of the environment during navigation. B.S 

Khan et al [5] has proposed a simple algorithm in which the vehicle navigates by detecting the lane 

markings. Graph cut segmentation technique along with CLAHE is used to process the lane markings 

in input images the captured by camera. This technique is robust to camera orientations and 

illuminations. However, navigation on roads without the road markings is not feasible in this method 

and also using only the visual information as an input is potentially dangerous as cameras fail to see 

through adverse environmental conditions like fog, mist, storms. Several advancements have been 

made to improve the visual capability of the vehicle. In recent times, FIR thermal cameras along with 

LIDAR sensors have been implemented to reinforce the visual based driving system [16]. 

A prototype of autonomous car developed by Mohammad Rubayat Tanvir Hossain et al [4], 

features a robotic car controlled by raspberry pi and Arduino which works in the created 

environment. Their model is also equipped with Haar feature based cascade classifier to detect 

traffic lights and obstacle avoidance algorithm using ultrasonic sensor. The car navigated flawlessly 

on a designed track by using OpenCV based lane detection techniques like Canny edge detection and 

Hough Transform to process images captured by the Picamera. This method has shown to provide 

an automated system which is safe and cost effective as well. The dependence on lane markings on 

the roads is the major setback of this paper. Also real time implementation requires a more powerful 

computing machine to support multitude of sensors inputs and machine vision algorithms. Concepts 

from papers [9], [12], [7] have been combined to implement stop sign detection using haar cascade 

classifier. 

The complex and unpredictable driving environment have made simple machine vision 

algorithms incapable because of the model’s dependency on the complex training data for enhanced 



performance. Also the processing speed of the networks degrades as more input elements are 

added. This has led to development of deep learning algorithms like Convolutional neural networks 

for vehicular automations. The end to end learning approach as explained in the literature [1] has 

proven to be faster and more powerful as it eliminated the need for preprocessing of the input data 

and is also able to work on any roads irrespective of the lane markings. With only very minimal 

training data from humans, deep learning methods facilitate efficient working of vehicles in complex 

environments. 

From the literature survey, it is evident that there is very less study on the algorithms that 

can be used for such automated systems. This project aims to throw some light on some of the 

possible methods and technologies automated vehicular systems can utilize. 

 

PROPOSED SYSTEM 

 Block diagram 

 

The proposed system consists of a processing unit composed of a Raspberry Pi and an 

auxiliary processing unit consisting of a PC. The processing unit is interfaced to the input and output 

units. Fig 2 shows the block diagram of this intelligent autonomous vehicle system. 

 

 

 

Fig 2 Block Diagram 

 

 

 



 Input unit 

 

The input unit consists of a Picamera and an ultrasonic sensor. The picamera provides 

images to the Raspberry Pi which it utilizes for both the training phase and the final autonomous 

driving phase. The camera essentially supplies with images of the track in our case. The ultrasonic 

sensor on the other hand is used to detect any obstacles in the path of the vehicle. It can also be 

used to find the distance between the vehicle and the obstacle in front. This information helps the 

vehicle to stop if there are objects or other vehicles in the track to avoid collision. 

 Processing unit 

 

The processing unit is divided into a main unit and an auxiliary unit. The main unit is the 

Raspberry Pi which is mounted directly on the vehicle. In the training phase the RPi acts as a data 

collection unit to provide images and corresponding labels. Once the images have been collected, 

they are ported to the auxiliary unit through a suitable File Transfer Protocol (FTP) server-client 

system. The auxiliary unit is used to train a neural network model with the collected images and 

labels. The need for the auxiliary unit arises as the RPi cannot efficiently handle extremely 

computationally intensive tasks such as training of network models. Neural network training also 

requires quite an amount of experimentation and the auxiliary unit consisting of a PC can be used to 

achieve this effectively. Once the network is trained, the trained model weights are sent back to the 

Rpi. The Rpi can now be used in the testing and autonomous driving phase. In these phases, for the 

captured images, the network weights are used to predict the direction of motion in which the 

vehicle must proceed. The predicted value is then used to drive the wheels of the vehicle. If a stop 

sign is detected, the vehicle is halted. The Rpi also uses the information from the ultrasonic sensor to 

detect obstacles. 

 Output unit 

 

The output unit is essentially composed of the motors attached to the wheels of the vehicle 

along with their driver. In the training phase, the motors are controlled by user input. In the testing 

and autonomous driving phase, the motors are controlled by the output of the neural network and 

require no manual intervention. The driver is used to supply necessary current to the motors and 

also helps in controlling the speed and direction of the motors. 

 

 MACHINE LEARNING 

In a broad sense, Artificial Intelligence describes the intelligent computers which think and 

act like humans. Machine learning is a type of artificial intelligence where machines can learn from 

data without explicitly programmed instructions. Machine learning requires a huge amount of data. 

With the development in data management techniques like Big data management, cloud computing, 

machine learning has had an enormous growth in last few years. AI has brought revolutionary 

improvements in the computing field in terms of cost and efficiency leading to its application in all 

walks of life. It has been used in all search engines, automation, driver assistance technologies, SIRI, 

ALEXA, CORTANA etc. Artificial Neural Network is another form of Artificial Intelligence which is used 

in this project to make the vehicle learn to run on the track. Dr. Robert Hecht-Nielsen, who is the 

inventor of the first neuro computer, defines a neural network as “a computing system made up of a 



number of simple, highly interconnected processing elements, which process information by their 

dynamic state response to external inputs” 

 

 ACTIVATION FUNCTIONS 

Activation functions decide whether or not to activate a node, thereby mapping the signals 

from the input to the output nodes. The output signal from one node could be used as an input to 

nodes of other layers in the case of Multilayer neural networks. Without Activation function, a 

neural network would simply be a Linear regression Model, which does not perform well in the case 

of complicated datasets consisting of images, videos, audios which require complex non-linear 

mappings from inputs to outputs [25]. 

Since the activation functions are differentiable, they are used in Backpropagation network 

mechanism which computes and optimizes the error function by comparing the output values and 

the desired values. The main goal is to make a complex neural network learn better by introducing 

non-linear properties thereby making the network more powerful. 

Activation functions vary in their range, threshold values, gradients and their performance 

vary with the neural networks. The proper choice of activation function is very essential as it has 

major impact on the training process. 

 

 

 TYPES OF ACTIVATION FUNCTIONS 

By varying the activation functions, various neural network models were designed, trained 

and each of their performance was studied to determine the apt model for our application. The 

various activation functions are described as follows. 

 Sigmoid function 

A sigmoid function represented by its characteristic S-shaped curve is differentiable, real and 

well defined for all input values. It maps the interval (-∞, ∞) onto (0,1) range. The sigmoid function 

is represented by 

𝐹(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
                                                                  (3.1) 

 
 

Fig 3 Sigmoid activation function 

 



It is very advantageous to use this function in the networks with the backpropagation models 

because of its non-negative first derivative. One of the major drawbacks of the Sigmoid function is 

the vanishing gradient problem (i,e the gradients gets saturated and die) . The output is not zero-

centered which makes the optimization difficult. 

 Hyperbolic tangent function 

A Tanh function is the ratio of hyperbolic sine and cosine function having the range of (-1, 1). It is 

represented by 

 

𝐹(𝑥) =
1−𝑒𝑥𝑝 (−2𝑥)

1+𝑒𝑥𝑝 (−2𝑥)                                                                  (3.2) 

 
 

Fig 4 Tanh activation function 

The outputs of Tanh functions are zero-centered which makes the optimization easier. Thus 

they are preferred over sigmoid functions. However, Tanh functions also suffer from vanishing 

gradient problem. 

 Rectified linear unit 

ReLU is the most commonly used activation function in the neural networks [10]. It is defined as the 

positive part of the argument and it is expressed as 

𝐹(𝑥) = max (0, 𝑥)                                                                  (3.3) 

Fig 5 ReLU activation function 



The ReLU activation is thresholded at zero and has a range from 0 to ∞. Since expensive 

functions like exponentials are avoided, ReLU function does not have vanishing gradient problem. It 

is proved that the convergence of gradient descent in ReLU is six times faster when compared to 

Tanh and sigmoid functions [13]. 

The major drawback in this activation function is that some of the neurons become fragile 

during the training, thus resulting in dead neurons. This problem could be minimized by adjusting 

the learning rates. However, ReLU function is restricted to the hidden layers in the neural network 

which explains the usage of Softmax functions along with the ReLU functions in most of the neural 

networks. 

 Softplus 

Softplus activation function is a smooth approximation to the ReLU activation function. It is 

described as 

𝐹(𝑥) = 𝑙𝑜𝑔(1 +  𝑒𝑥𝑝 (𝑥))                                                        (3.4) 

 

 

Fig 6 Softplus activation function 

Softplus functions are smooth and easily differentiable at zero. However, ReLU is preferred to 

Softplus function because of its simple structure which enables fast and easy computations. 

 Leaky ReLu 

Leaky ReLU activation function is obtained by modifying the ReLU function such that it has 

small negative value instead of zero for negative inputs. This eliminates the problem of dead 

neurons in the hidden layers. This function is expressed as 

𝐹(𝑥) = x, (x ≥ 0)                                                                  (3.5) 

𝐹(𝑥) = αx, (x < 0)                                                                 (3.6) 

 

where α is a constant, (α<1). 



 
 

Fig 7 Leaky reLU activation function 

 

The result of this activation function not being consistent at all times is its major setback. Learning 

rate has to be chosen carefully to prevent the neurons from being stuck at dead zones. 

 Softmax function 

It is widely used in the outer layer of the neural network. It differs from all the other 

activation functions in terms of the number of classification of the output classes (i,e it can be used 

to classify even more than hundred different classes). The Softmax function is defined as ratio of the 

exponential of the input units to the sum of all exponentials of the input units [14]. The expression is 

given as 

𝐹(𝑋𝑖) =
𝑒𝑥𝑝 (𝑋𝑖)

∑ 𝑒𝑥𝑝 (𝑋𝑗)𝑘
𝑗=0

                                                       (3.2) 

 

It calculates the probabilities of every output class and selects the target output based on the 

class with highest probability. The softmax function maps the inputs to the range of (0,1) similar to 

the sigmoid function and in addition to that it also divides the outputs such that the sum of all 

output probabilities are one thereby ensuring only one output is selected (i,e only one output class 

will have high probability).Thus the softmax functions are mostly used when there is the need for 

non-binary classifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HARDWARE 

The hardware components used for this system consists mainly of a Raspberry pi, a camera 

module, an ultrasonic sensor and a motor driver. 

 

Raspberry PI 

 

Raspberry Pi is a single board computer manufactured by the Raspberry Pi Foundation. The 

compact board, with dimensions 85.60 mm × 56.5 mm × 17 mm and og 46g weight, is very powerful 

and has proved to be of great use in small scale projects, home and industrial automation products, 

and in education. Several models have been release since the launch of the first generation model in 

2013. The model used in this project is Rpi 3B. Launched in February 2016, this model is built on an 

ARMv8-A (64/32-bit) architecture with a Broadcom BCM2837 system on chip. The Central Processing 

Unit is a 64-bit quad-core ARM Cortex-A53 with a clocking frequency of 1.2 Ghz. The built in memory 

is about 1GB which is shared with the Graphical Processing Unit. The board also consists of a 

MicroSDHC slot in which SD cards can be mounted for extra storage. [18] 

 

 

Fig 8 Raspberry Pi 3 Model B. Source: [18] 

The board features four USB 2.0 ports which can be used to interface multiple USB devices at once. 

A HDMI port is provided to visualize the GPU. A 15-pin MIPI camera interface connector is also 

provided. This can be used along with the Raspberry Pi camera module for image and video 

capturing. The power rating of the board is around 1.5 W when idle and a maximum of 6.7 W under 

stress. The 3B board also has built provisions for 2.4 GHz WiFi 802.11n (150 Mbit/s) and Bluetooth 

4.1. The entire board is to be supplied from a power source providing 2.1 A current at 5V. For remote 

uses, power banks can be used. 

The board has a 40 GPIO pins which can be used to obtain input and provide output signals to other 

components and devices. Fig 9 shows the pin layout of the RPi 3B model. 



 

Fig 9 Pin layout of the RPi 3B model. Source: [19] 

 

 Camera module 

 

The camera module used in this system is a Raspberry Pi Camera Module v2. The camera has 

an 8 Megapixel sensor [20] which captures high definition video and photos. The camera is attached 

via a 15cm ribbon cable to the CSI port on the Raspberry Pi. Fig 10 shows a Pi camera module 

attached to the RPi board. 

 
 

Fig 10 Pi camera module attached to the RPi board. Source [20] 

 

The parameters of the Pi camera can be controlled using various libraries built for it. The python 

Picamera module has been used in this project. 

 Ultrasonic sensor 

 

Ultrasonic sensors are used for ranging purposes. They consist of a transmitter and a receiver. The 

transmitter sends a high frequency ultrasonic sound, which on encountering obstacles, will be 

reflected back. The reflected pulse is detected by the receiver. The time difference between the 

sending of trigger pulse and the reception of the echo pulse can be used to determine the distance 

at which the obstacle is present. Fig 11 shows HC-SR04 which is a popular ultrasonic sensor module. 

 

 

 

 



 

 

Fig 11 HC-SR04 

 

 Motor driver 

 

Motors need to be driven with appropriate current. Generally the control signals from the RPi are 

not sufficient to drive the motors. There is also a need to alternate the voltage directions and the 

power to control direction and speed. For this purpose, a motor driver IC is used. These motor 

drivers consists of a H-bridge circuit which allows to alternate the voltage across the load. The motor 

driver takes input from a controller (RPi in this case) and uses the voltage from a battery to provide 

the necessary driving current to the motors. L293D is the motor driver IC which has been used in this 

system. This IC can control two motors separately. For each motor, the IC has an enable pin and two 

control inputs. The schematic of the IC is given in Fig 12. 

 

Fig 12 Schematic of L293D (Source:[23]) 



SOFTWARE 

The entire project is programmed with Python language along with other supporting softwares and 

libraries that includes putty, VNC viewer, opencv, tensorflow. 

 Python and its packages 

Python is a high level general purpose programming language developed by Python software 

foundation in 1991. Python supports a range of paradigms like Object Oriented, Functional, 

Structural programming paradigms wholly and several other paradigms with extensions. Python is 

used in various Operating Systems like UNIX, Linux, Windows and Mac OS. The language is easy to 

understand with simple features and elegant syntaxes that offer dynamic typing thereby making it 

very useful software for backend web development, data analysis, artificial intelligence, app 

development, graphic design applications, etc., [24]. The Python interpreter and the extensive 

standard libraries are available for free which adds to its popularity. Python 3.5 version is used in this 

project. This version features significant changes in standard library and syntaxes, with addition to 

new built features including some improvements in windows. 

 Tensorflow 

Tensorflow is an open source library created by Google in November 2015 exclusively for machine 

learning and deep learning applications. This software library basically uses data flow graphs for fast 

numerical computations which help us build, train and optimize the neural network in an efficient 

way. The flexible architecture of tensorflow allows the computations to be deployed in CPUs, GPUs 

and also in smartphones. It works with C++, Python 2.7, Python 3.3+ versions. Google uses 

tensorflow in its wide range of applications like Gmail, maps, Google play, Google translate etc. The 

data is represented in the form of tensors that are nothing but multidimensional arrays. 

The process includes creating the computational graphs in which inputs and outputs are Tensors and 

the nodes are called “operations,” or “ops.” Each node represents a mathematical operation that is 

performed on the tensors [24]. 

Primarily, all the values are to be initialized either as constants or variables. Constants are used 

when the values do not change and variables are used when the parameters demands updated 

values. Placeholder is used to define these variables. After the data is initialized, it is subjected to 

evaluation. The Tensorflow then runs a session in which all the nodes in computational graph are 

evaluated and the results are obtained. 

With the recent release from TensorBoard, a data visualization toolkit that enables a better 

understanding of all the data flow graph operations has been made possible. Tensorboard provides 

summary of node operations and various parameters apart from the graphic visualizations of the 

tensorflow programs. All these features of the tensorboard make it easy to understand, debug and 

optimize complex multi-layer neural networks. 

 Putty 

PUTTY is an open-source client program which is used to remotely connect to systems or servers. It 

supports various network protocols like SSH, telnet, Rlogin. Putty is mainly used in the Windows and 

Unix platform since it does not have an SSH client on its own. In our project, Raspberry Pi is accessed 

from a windows system with the help of Putty and SSH which provides a secure connection on the 



internet. The computers that desires an access to the Raspberry Pi has to be connected to the same 

network as that of the Pi [21]. 

Once the Putty software is installed in a windows machine, a configuration window appears in which 

hostname (i,e name of the server that should be accessed) or its IP address and the type of the 

protocol has to be specified. The Raspberry has to be selected as a host and SSH protocol is used for 

logging in after which Pi can be accessed remotely. 

 VNC Viewer 

Virtual Network Computing refers to the desktop sharing facility that is based on Remote Frame 

Buffer protocol which offers remote access and control over other systems. This open source 

software is employed in many applications that require remote access of files, home computer 

networks, remote troubleshooting and system support for customers and employees. VNC is a client 

server protocol where VNC server must be installed in the machine which is to be accessed and VNC 

client must be installed in the machine that would control the server. 

VNC Viewer is client server software based on VNC protocol developed by the REAL VNC company 

which works on Windows, Unix, Mac systems. Raspberry Pi is accessed and controlled on a Windows 

system using VNC Viewer over a network (i,e the raspberry pi desktop screen in replicated in our Pc). 

This offers various advantages as it eliminates the need for separate keyboard and monitor for the 

Raspberry Pi [22]. 

The first step in establishing the connection requires downloading and installation of VNC client in 

Windows PC. Then the VNC server, installed on the Pi has to be configured in such a way that the 

server automatically starts to boot up. This can be done with the configuration settings by enabling 

the VNC given under the interfacing options menu. 

Once these initial setups have been completed, the IP address of the Raspberry Pi, username and 

password has to be entered in the VNC Viewer which makes client PC to serve as the Raspberry Pi’s 

monitor. 

 

RESULTS AND DISCUSSION 

 PHASE ONE 

 

In the phase one of the project, neural network was trained to classify the images fed into it 

as left and right. All the processes were done using a computer in Python. The process and the 

results are covered in the subsequent sections. 

 Data collection 

 

Modelling of any neural network starts with the collection of data and its labels. Dataset 

was created with the images collected from an online car simulator. Every image shows a graphical 

car taking either left or right turn. This dataset consists of 52 images in which 40 images were used 

for training the network and 12 were test images. 

 



 

Fig 13 Dataset and label file 

Fig 13 shows the dataset consisting of 52 images and the label file which is used to train the 

neural network. This neural network predicts two directions, left and right namely and hence the 

labels are assigned as ‘0’ for left direction and ‘1’ for the right direction. All the images were labelled 

accordingly in a text document. This file is the label file for this model. 

 

 Training and testing 

 

The images and its associated labels were first converted into numpy format before it were fed 

to the neural network. The images were resized and normalized to make the network perform well 

under different illuminations. 

The specifications of the neural network model are given below. 

 

• Input nodes= 75840 (No. of pixels) 

 

• Hidden Layer 1 nodes= 256 

 

• Hidden Layer 2 nodes= 256 

 

• Output nodes= 2 (No. of labels) 

 

• Learning Rate= 0.01 

 

• Batch Size= 5 

 

• Activation= RELU 

 

• Optimizer= Adam’s 



 
 

Fig 14 Training process 

The training processes were repeated until an optimal accuracy was achieved. Fig 14 shows the 

training process of the network. Its noted that,as the neural network learns, the cost function (i,e 

error function) keeps decreasing as it reassigns the weights based on the error function. This process 

was repeated for the specified number of epochs and a model with 87.5% accuracy was obtained. 

  

 Prediction 

 

Prediction results provide an insight into the performance of the neural networks. In the 

prediction program, the trained model was incorporated into a network having the same 

specifications as the training program has had. A new set of images (i.e images that were not used in 

the training process) were used to test the trained model. 



                   

 

 

 

Fig 15 Correct predictions 

 

 

Fig 16 Wrong predictions 

 

Fig 15 and Fig 16 shows the prediction results of the eight test images. The performance of the 

network is found to be good with six correct predictions and only two wrong predictions. This model 

can be further optimized and trained better with more number of training images. 

  



 PHASE TWO 

 

In the second phase of the project, a neural network was been trained to classify the images 

taken by a robotic car. The trained network model was then used to drive the car autonomously. The 

robotic car was set up by connecting the Raspberry pi to the motors mounted in a chassis through 

L293D. The Input and enable pins were connected to GPIO pins in the raspberry pi and where 

programmed to turn left, right and forward on command. A Pi camera was also attached to the 

raspberry pi and sturdily mounted on top of it. The HC-SR04 module was also interfaced to Rpi 

through a voltage divider circuit. A power bank is used to power the Rpi and a 9V battery is used in 

the interface of Pi with L293D. Fig 17 shows images of the robotic car. The various processes 

performed and the results are covered in the subsequent sections. 

 

 

Fig 17 The hardware set-up 

 Data collection 

 

A new portable track was designed on a flex sheet on which the car was made to learn to 

drive by it. Two parallel strips of two centimeters each represent the boundary of the S shaped curve 

having left and right turns. 



 

Fig 18 Image of the track 

 

Images of the track were collected by manually driving the car on the track. The data collection 

process is shown in the Fig 18. 

 

 
 

Fig 19 Training data collection 

 



The car was made to move on a key press. For every step, an image of the track was captured by the 

Picamera and was saved in a folder along with its appropriate label which was saved in a text file. 

Three labels namely 0, 1 and 2 for forward, left and right directions respectively were used for this 

network. 

About 600 images were collected by driving the car several times on the track under various 

illuminations. By using a data augmentation technique called flipping, another 600 images of the 

track were obtained. 

The dataset was then balanced by assigning an equal number of images for all the three output 

classes (i,e left, right and forward). Dataset consisted of 1392 images in which a total of 1248 images 

were used for training the neural network with each output class consisting of 416 images and the 

remaining 144 images were used for testing the network. 

Comparison and optimisation of neural network models 

A variety of neural network models were designed using the different activation functions described 

in the chapter 3. The models were also optimized by reducing the number of input nodes and hidden 

layers. The performance of each of the models was studied in order to choose the best model for 

this application. 

The specifications for the neural network models with different activation functions are given below. 

Hidden Layers=2 Optimizer= Adam’s Learning Rate= 0.01 

Input nodes= 786 (No. of pixels) Output nodes= 3 (No. of labels) 

 

The activation functions were varied only the hidden layer whereas the output layer had softmax 

activation. The neural networks were first trained and then the trained models were tested for its 

performances using new sets of images called prediction test images. A set of 21 images captured 

under different illuminations were chosen for testing all the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 Comparison of two layered neural networks with different activation functions 

 

HIDDEN LAYER NODES ACTIVATION FN ACCURACY 

512 ReLU 66 

256 ReLU 67.77 

256 LeakyreLU 77 

256 LeakyreLU 71.42 

256 Tanh 85.71 

256 Sigmoid 90.47 

256 Softmax 95.21 

 

 

Table 1 shows the following. Network with reLU activation function had the lowest accuracy 

of 66% for test image set of 144 images. It shows that the model is biased towards two of the three 

outputs (i,e model predicted only forward and right directions correctly). The results were similar 

when number of hidden layer nodes was reduced from 516 to 256. Hence for all other models 256 

hidden layer nodes were used in order to reduce the prediction time. The model with the leaky reLU 

function provided slightly better results than the reLU model. With an accuracy of 77%, the model 

predicted most of the forward and right directions and very few left directions. Models with 

activation functions like tanh and sigmoid provided a very good accuracy of 85% and 90% 

respectively. Both these models predicted 19 of the 21 test images correctly. 

Maximum accuracy of 95.2% with extremely good prediction results was achieved in the neural 

network with softmax function. 

Table 2 Comparison of neural networks with reduced hidden layer nodes 

 

HIDDEN LAYER NODES ACTIVATION FN ACCURACY 

32 Tanh 84.71 

32 Sigmoid 90.47 

32 Softmax 95 



 

The models were further optimized by reducing the hidden layer nodes to minimize the 

processing time. For this the models from the table 1 having accuracy more than 75% were chosen. 

Table 2 shows that the accuracy of the models having 32 nodes was almost equal to the models with 

256 nodes. Further reduction in hidden layer nodes provided poorer results as the models were able 

to predict only one of the directions correctly. From the above discussion the optimal two layered 

neural network model is chosen to be the one with softmax function having 32 hidden layer nodes. 

The next level of optimization was done in the hidden layers. The neural networks were 

implemented with a single hidden layer and their performances were compared with the networks 

having two hidden layers to analyze if better results could be achieved with lesser complexity of the 

neural networks. 

Table 3 Comparison of single layered neural networks with different activation functions 

 

 

HIDDEN LAYER NODES 

 

ACTIVATION FN 

 

ACCURACY 

32 softplus 69 

32 relu 71.42 

32 leakyreLU 85.71 

32 tanh 90.23 

32 sigmoid 95.23 

 

 

Starting with 512 hidden layer nodes, several single layered models were trained and the 

prediction results were subnormal. The training and optimization processes were repeated until 

certain accuracy is achieved. 

The comparison of single layered networks with 32 hidden layer nodes is given in the table 

3. With an accuracy of only 30% Softplus model performed the worst as it was able to predict only 

one direction (i,e forward direction). The reLU model was yet again an average accuracy model with 

prediction results being biased to two of the directions.  Neural networks with leaky reLU and tanh 

provided higher accuracy with better prediction results as well. Applying sigmoid in the hidden layer 

resulted in a neural network with desired accuracy of over 90%. The training of the sigmoid model is 

shown in the Fig 20. 

 

 



Fig 20 Training process of two layered sigmoid model 

 

 Prediction 

 

Before implementing the trained neural network to drive the car autonomously on the track, 

its performance was tested on the computer using a prediction algorithm. The chosen model with 

sigmoid function provided extremely good results by predicted all the test images correctly. Fig 21 

shows the model’s correct predictions of all the directions. 

 

 

 

Fig 21 Training process of single layered sigmoid model 



 

      
 

 

Fig 22 Direction prediction using sigmoid model 

 

From the above discussions it is concluded that the model with the sigmoid activation function 

which performed exceptionally well in both the cases of single and double layered networks would is 

the apt model to be used to test the car on the track given in the Fig 17. 



CONCLUSION AND FUTURE ENHANCEMENTS 

 

In this project, a prototype of an intelligent autonomous vehicle was developed. The vehicle 

has been able to navigate in the trained track and detect stop signs and obstacles. As a future 

extension, the speed of the processing could be optimized by better choice of processor and also 

through multithreading techniques. Deep learning algorithms can be used for better accuracy on 

smaller dataset. The training can also be made diverse and more robust by adding images from 

various tracks under different circumstances. Finally, a multitude of other sensors can be integrated 

through sensor fusion to improve the robustness of the decisions taken by the vehicle. 
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