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ABSTRACT 

Over the years, there has been growing interest in incorporating computer vision into the retail industry. 

One crucial challenge in this field is the Automatic Checkout (ACO) problem, which involves creating a 

shopping list from images of products that have been purchased. The main challenge of this problem comes 

from the seasonal and large scale and the fine-grained nature of the product categories as well as the 

difficulty for collecting training images that reflect the realistic checkout scenarios due to continuous update 

of the products. The different orientations of the objects in the checkout scene also add to the complexity 

of the problem. 

Despite its practical and research significance, this problem has not been thoroughly explored in the 

computer vision community, primarily due to the absence of a comprehensive data set. Through this project, 

we attempt to model a photorealistic synthetic image generation architecture pipeline that can augment 

the base dataset to improve the Radius AI production classifier model. This improved dataset can then also 

be used to solve the automatic checkout problem, whilst giving a higher performance on the Radius AI 

object detection models. 

The augmented dataset that we curate will be able to generate novel images in the scene, and heuristically 

is bound to improve the accuracy of the Radius AI object detection model. 
 

 

 

 

Retail Checkout Scene -> Automatic Bill Checkout 

 

 

 

 

 



 

 

SYSTEM OVERVIEW

 

The system overview consists of feeding the photo-realistic synthetic image generator with fine-grained 

classes to generate novel views/synthetic images to augment the base dataset and further finetuning the 

model to improve the accuracy of the object detection model. 

Fine-grained classes refer to highly specific categories within a broader class. For example, within the broad 

category of soda cans, fine-grained classes might include species like zenify, coke, or fanta. By generating 

synthetic images of these specific instances, the model can be trained to recognize and classify them more 

accurately. 

We propose to use advanced algorithms – like GANs, NeRFs, Diffusion Models to create images that are 

designed to look as realistic as possible. These images are based on the characteristics of the fine-grained 

classes that the system is trying to generate and can be customized to meet specific needs. Once the synthetic 

images are generated, they can be added to the existing dataset and used to fine-tune the machine learning 

model. Fine-tuning involves adjusting the model's parameters based on the new data to improve its 

accuracy. By using synthetic images to augment the dataset, the model can be trained on a larger and more 

diverse set of examples, which can help it perform better on real-world data 

 

 

 

 

 

 

 



OBJECTIVES 

A. Investigation, research, and development of state- of-the art methods for photo-realistic synthetic 
image generation. 

B. Compare different model accuracies to produce the best synthetic image generation architecture 
C. Investigate the generalizability to variety of target domains 

DELIVERABLES 

A. Develop a baseline end-to-end object detection pipeline to test the accuracy of the base dataset 

and the augmented dataset 

B. GAN Model Deliverable: Utilize Generative Adversarial Networks and variants thereof to 

generate images to augment the base dataset 

C. NeRF Model: Train, Test and deploy Neural Radiance Fields to generate novel views for a given 

scene/ objects in a scene - augmenting the base dataset 

D. Utilize PixelNeRFs, training each type of objects to generate 3D images with few image – 

augmenting the base dataset 

E. Evaluation of B, C, D Models, and curating Photo-Realistic Synthetic Image Dataset 

F. Object Detection Model Accuracy and Final Report 

 

WORK BREAKDOWN STRUCTURE 

 
 

 

 

 

 



REALISTIC CONSTRAINTS/ENGINEERING STANDARDS 

The constraints of this project are as follows: 

1. Accuracy: In a photo-realistic synesthetic image generation project, the accuracy of the generated 

images is of utmost importance. Therefore, it is necessary to evaluate the quality of the generated 

images thoroughly. 

2. Validation and Verification: The models used in the project should be validated and verified to 

ensure that they are functioning correctly. Validation and verification help to identify any errors or 

issues in the system, which can then be addressed. 

3. User Interface: The user interface should be designed to provide a smooth and intuitive experience 

for the users. It should be able to handle the input data effectively and display the output results 

accurately. 

4. Interoperability: The project should be designed in such a way that it can be integrated with other 

systems easily. This will allow for the exchange of data and information between different systems. 

 

 

SYSTEM REQUIREMENTS 

L1. The end-to-end image object detection pipeline should take a set of image and bounding box 

information and feed a YOLOv5 object detection model 

L1.1 The input image should be in the RGB format 

L1.2 The bounding box information for each image should be associated with its respective class and 

bounding box information(x,y,w,h) 

L2. Accuracy: The model should accurately detect objects within an image or video. 

L2.1 The object detection model should have accuracy above 90% 

L2.2 The model should be optimized for speed, using techniques such as GPU acceleration and parallel 

processing. 

L2.3 The system should produce consistent results, with a low rate of variability in image quality. 

L3 Speed: The model should run in real-time, processing images and videos quickly to allow for quick and 

accurate object detection. 

L3.1 The system should be optimized for speed, using techniques such as GPU acceleration and parallel 

processing. 

L4 Scalability: The model should be able to handle a large number of images be able to process them 

efficiently. 

L4.1 The model should scale well across all the images generated from the 3 different dataset 

augmentation techniques (NeRF’s, GAN’s) 

L5. Robustness: The model should be able to handle diverse and challenging environments, such as images 

with low resolution or images with objects partially obscured. 

L5.1 The model should be able to handle diverse and challenging environments, such as images with 

low resolution or objects partially obscured. 

L6 Adaptability: The model should be able to adapt to new objects and categories over time, allowing it to 

continuously improve its detection capabilities. 

L7 Multi-object detection: The model should be able to detect multiple objects within an image or video 

simultaneously. 



L8 Object Classification: The model should detect objects and classify them into their respective categories. 

L9. False positive reduction: The model should be able to minimize false positive detections, reducing the 

number of incorrect detections. 

L10 Performance metrics: The model should be evaluated using performance metrics such as precision, 

recall, F1 score, and mean average precision (MaP). 

L11. Batch processing: The model should be able to process large amounts of data in batch mode, allowing 

for efficient processing of large datasets. 

L12 One of the methods involves generating images using Generative Adversarial Networks 

L12.1 Input image should be RGB. 

L12.2 The model should need pairs of inputs, real images and masks 

L12.3 The model should be able to train and test different classes of objects at one time. 

L12.4 The model outputs an image that is similar but not identical to the original image. 

L13 One of the methods involves generating images using NeRF 

L13.1 Input image should be RGB. 

L13.2 The model should need to input images and input object viewing angle. 

L13.3 The model should be able to train and test different classes of objects at one time. 

L13.4 The model outputs images which are from a different perspective of the input object. 

L14 This project attempts to generate 3D images using Pixel NeRF 

L14.1 Select a model for 3D reconstruction. 

L14.2 Test the model to find out how much losing the training set will crash the model to get the model 

limit. 

L14.3 Predict and generate many images with a small number of images. 

 
SYSTEM SPECIFICATIONS 

In order to run our experiments, we used a combination of web-based resources, i.e. Google Colab and two 

NVIDIA 2080-Ti GPU cards. This machine set up in the capstone laboratory also had 22 GB of RAM. 

Certain amount of code had to also be carried out on our local machines, most of which were Macbooks 

with either 16 or 8 GB of RAM. 

 

SOFTWARE DESIGN 

Synthetic Scene Generation: 

To train an object detection model such as YOLOv5, a dataset containing images with objects of interest 

and their corresponding bounding box annotations in text files is required. The larger the dataset, the better 

the model can be trained since it will be exposed to more examples during the training process. However, 

it is not enough to have a large dataset; it should also be diverse with objects of interest mixed with other 

objects in various environments, positions, and backgrounds. One way to create such a dataset is by 

manually taking a lot of photos and annotating them, which is time-consuming but yields high-quality data. 

Alternatively, an automatic synthetic dataset can be created by randomly scaling, rotating, and adding 

cropped photos of objects of interest to different backgrounds using a Python script, with corresponding 

annotations also generated by the script. 

 



 

Fine-Grained object classes and their respective masks

 

(i) (ii) (iii) (iv) (v) 

Image Backgrounds from Different Perspectives 

 

Using an automated process to create a dataset is significantly faster compared to a manual process. For 

instance, generating 1000 synthetic images and their corresponding annotations can be completed in under 

an hour, whereas taking 1000 diverse photos and manually annotating them would require much more time. 

Creating a retail product dataset manually would require a significant amount of time and resources, as it 

would involve taking pictures of various products in various locations, with diverse backgrounds, and under 

different lighting conditions, and then manually annotating each image with the corresponding product 

name and bounding box. This manual process can be time-consuming, expensive, and may not yield a 

sufficiently diverse and representative dataset. 

On the other hand, an automated process can be more efficient for a retail product dataset. This is because 

it allows for the quick and easy generation of large volumes of product images and their corresponding 

annotations, without the need for costly and time-consuming manual effort. Automated generation of 

synthetic product images can also help to ensure that the dataset is sufficiently diverse and representative, 

by varying product placement, lighting conditions, backgrounds, and other factors. Furthermore, this 

approach can be easily scalable, allowing for the generation of large datasets that can be used to train 

complex machine learning models for a wide range of retail product recognition and detection applications. 

 

 

Features of the Synthetic Scene Generation Script: 

1. Point Generation: Given a desired area on the image, here a table, the script generates a point on 

the image and places the object on the scene. 

2. Overlap Control: Create datasets with varying levels of complexity: The script checks the degree 

of overlap between the objects placed on the scene. Here in the base dataset created, the degree of 

overlap set is 20%. 

3. Number of objects in the Dataset: The script can also datasets of varying complexities, like the 

number of objects in the scene. Since the RAI dataset has 15 classes, we will be fixing the number 

of the objects in the scene to 15. 

4. Generate normalized YOLOv5 annotations for all the objects in the scene. 

<object-class-ID> <X center> <Y center> <Box width> <Box height> 



5. [WIP] Enhance the scale factor of the images placed in the scene to enhance the photorealism of 

the scene 
 

UML Sketch of the Synthetic Scene Generation Algorithm + Detection Pipeline 

Scene Visualization with corresponding Annotations: 

 

(i) Synthetic Scene Generation 1 



 

(ii) Synthetic Scene with corresponding YOLOv5 Annotations 
 

 

 

 

(i) Synthetic Scene Generation 2 



 

(ii) Synthetic Scene with corresponding YOLOv5 Annotations 

 

 

Image Generation (DCGAN): 

• DCGANS are used to generate high-quality images by leveraging convolutional layers in both 
generator and discriminator networks. Therefore, we try to generate more realistic images by 
learning the underlying distribution of the input data using the dc GAN model. 

• The GAN is divided into two parts, it is composed of two networks called discriminator and one 
called generator, which then together form the GANs network. 

• For the generator, the input to the generator is some random matrix. The input to the discriminator 

is two images, which are the image generated by the generator and the image in the training set. 

Then the two images are fed in, their differences are discriminated, their losses are calculated, and 

finally the losses are made as small as possible. By such a mechanism, the discriminator becomes 

better and finally makes the result better. Because the generated image is as similar as possible to 

the original image, then it is equivalent to generating a realistic image. 
 

 

Flow Chart of the Sequence of Operations 



• At first, we trained all the data together, and the results were not particularly good. 

 

• Later, we improved it by classifying the data and training them separately. 
 

 

• But there is still some noise on the image, we used the median filter to remove the noise on the 

image, so that the results are easier to identify and verify. 
 

• Finally, we modified the model of DCGANs: increased mask input to enhanced learning, and we 

also changed the generator, using the u-net architecture to make the generated images get high- 

frequency features, it makes the results clearer. 

 

 

 

 



Image Generation (Pixel2Pixel GAN): 

The original datasets are not large enough and increasing the diversity of datasets may potentially 

improve our accuracy of classification. Thus, we try to use pixel2pixel GAN to generate more diverse 

synthetic images using pixel2Pixel GAN. Pixel2PixelGAN requires a pair of input which is one real 

image and one mask. 

Preprocess on masks: 

1. Use Sobel Edge Detector to generate masks with mode detailed information. 

2. Use Gaussian blurring to remove noise and extract main features. 

3. Add 500 random noises to increase diversity. 
 

Process for Masks 



Generator of pixel2pixelGAN 

The U-Net architecture is designed to perform pixel-wise segmentation of images, where each pixel is 

assigned, a label based on the class it belongs to. To achieve this, U-Net uses skip connections that connect 

corresponding layers in the contracting and expansive paths, which help preserve spatial information and 

reduce the loss of information during the down-sampling and up-sampling processes. U-Net has been shown 

to be highly effective for a wide range of image segmentation tasks in various domains, such as medical 

image analysis, satellite image segmentation, and cell segmentation. 
 

 

U-Net Architecture 

 

 

YOLOv5 Architecture 

The architecture of YOLOv5 is based on a deep convolutional neural network (CNN) that is designed to 

detect objects in images. The network consists of a backbone architecture, a neck architecture, and a head 

architecture. 

The backbone architecture is responsible for extracting features from the input image. YOLOv5 uses a 

variant of the Efficient-Net architecture called CSP (cross stage partial connections) to serve as the 

backbone. The CSP architecture utilizes a partial connection between the input and output of each stage, 

allowing for efficient feature reuse across different scales. 

The neck architecture is responsible for combining the features extracted by the backbone and enhancing 

them further. YOLOv5 uses a spatial pyramid pooling (SPP) module, which pools features at different 

scales to capture multi-scale information. 

The head architecture is responsible for making predictions based on the extracted features. YOLOv5 uses 

a set of fully connected layers followed by convolutional layers to predict bounding boxes and class 



probabilities. The predictions are made at three different scales, allowing for detection of objects at assorted 

sizes and resolutions. 

YOLOv5 also uses anchor boxes, which are pre-defined shapes used to predict the bounding boxes of 

objects. This allows the network to detect objects of different shapes and sizes. 
 

 

Architecture of YOLOv5 

 

 

SOFTWARE IMPLEMENTATION 

The base synthetic training dataset was created with 2000 training images, and a validation dataset was 

defined with 500 images. 

The number of instances of the classes in the training dataset are displayed in the following figure: 

 



The YOLO5s model was chosen as the backbone for the training for the ease of training and the 

hyperparameters were chosen as the following based on the initial tests performed. 

1. Number of epochs: 100 

2. Batch Size: 32 

3. Optimizer: SGD (lr = 0.01) 
 

Fig. Training Batch001 
 

 

Fig. Training Batch002 



Training/Validation Loss Curves [nepochs = 100] 

 

 

 

Inference on Real Data 

QUALITATIVE RESULTS 

 



 
 



QUANTITATIVE RESULTS 

Test Dataset Results: 
 

 
Image Generation (Neural Radiance Fields) 

Neural Radiance Fields (NeRF) is a recent technique for synthesizing photo-realistic 3D models of scenes 

from 2D images using a deep neural network (multi-layer perceptron). The key idea is to learn a continuous 

representation of the scene's 3D geometry and appearance from a collection of images, which can then be 

used to generate novel views of the scene from any viewpoint. 

1. Scene Representation 

The scene is represented as a continuous 3D function that maps a 3D point in space to a radiance value, 

which describes the scene's color and brightness (density) at that point. This function is represented by a 

neural network, which takes a 3D point as input and outputs the corresponding radiance value. 

Formally, let 𝑅(𝑥) denote the radiance value at point x in 3D space, and let 𝑓(𝑥; 𝜃)denote the neural 

network function that predicts this radiance value. Then, we have, 𝑅(𝑥) = 𝑓(𝑥; 𝜃) 

The neural network 𝑓(𝑥; 𝜃) considered in NeRFs is a multi-layer perceptron (MLP). 



2 

2. Training Data 

To train the neural network function 𝑓(𝑥; 𝜃), we need training data consisting of images and corresponding 

camera poses. Specifically, let 𝐼𝑖 denote the 𝑖𝑡ℎ image in the dataset, and let 𝐶𝑖 denote the corresponding 

camera pose (i.e., the position and orientation of the camera when the image was taken). Then, the training 

data consists of pairs (𝐼𝑖 , 𝐶𝑖) for 𝑖 = 1, … , 𝑁 . 

1. Loss Function 

The goal of the neural network function 𝑓(𝑥; 𝜃) is to predict the radiance value 𝑅(𝑥) at any point x in 3D 

space, given the training data. To achieve this, we need to optimize the parameters 𝜃 of the neural network 

to minimize the difference between the predicted radiance value and the ground truth radiance value. 

Formally, let 𝑅𝑖(𝑥) denote the ground truth radiance value at point 𝑥 in the 𝑖𝑡ℎ image and 𝑝𝑖(𝑥) denote the 

predicted radiance value at point 𝑥 in the 𝑖𝑡ℎ image. Assuming the image has dimensions 𝑚 ∗ 𝑛 , we define 

the loss function 𝐿(𝜃) as follows: 

𝑚 𝑛 
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𝐿(𝜃) = ∑ ∑ 𝑤𝑖𝑗 ||𝑅𝑖(𝑥𝑗) − 𝑝𝑖(𝑥𝑗; 𝜃)|| 
𝑖 =1 𝑗 = 1 

where 𝑤𝑖𝑗 is a weight that depends on the distance between the camera pose 𝐶𝑖 and the 3D point 𝑥𝑗 in the 

scene. The weight is given by: 

 
𝑤 = 1 ∗ exp (− ( 

 
𝑑𝑖𝑗

) )
 

𝑖𝑗 
  

𝜎2 𝜎 

where σ is a constant that controls the size of the weight function and 𝑑𝑖𝑗 is the Euclidean distance between 

the camera pose 𝐶𝑖 and the 3D point 𝑥𝑗. While this is a generalized loss function, the one we have considered 

in our implementation is a simple 𝐿2loss between the synthesized image and the ground truth image. The 

loss function 𝐿(𝜃) is optimized using stochastic gradient descent (SGD) to find the optimal parameters θ. 

2. Rendering 

Once the neural network function 𝑓(𝑥; 𝜃) has been trained, we can use it to render novel views of the scene 

from any viewpoint. To do this, we first sample a set of rays that pass through the image plane at the desired 

viewpoint. For each ray, we use ray marching to find the 3D point where the ray intersects the scene 

geometry. Ray marching is a technique used to trace the path of a ray of light as it passes through a medium 

or interacts with an object in a scene. We then use the neural network function 𝑓(𝑥; 𝜃) to compute the 

radiance value at that point and use it to color the pixel corresponding to the ray in the output image. 

Let P denote the output image, and let 𝑝𝑖 denote the 𝑖𝑡ℎ pixel in P. Let 𝑟𝑎𝑦(𝑝𝑖) denote the ray that passes 

through pixel 𝑝𝑖 in the image plane at the desired viewpoint. Then, for each ray 𝑟𝑎𝑦(𝑝𝑖), we compute the 

near and far bounds for the scene - 𝑡𝑛 and 𝑡𝑓 . Employing a uniform binning strategy between these bounds, 

we get the 3D points 𝑥𝑖 , 𝑖 ∈ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑡𝑛, 𝑡𝑓 ) for the scene geometry and use the neural network to compute 

the corresponding radiance value 𝑅(𝑥𝑖). This radiance value is then used to color the pixel 𝑝𝑖 in the 

corresponding output image. 



3. Implementation 

To implement Neural Radiance Fields, we have used PyTorch. The basic steps for implementing NeRF are 

as follows: 

Step 1: Define the neural network architecture for 𝑓(𝑥; 𝜃), which takes a 3D point and camera orientation 

along with the camera intrinsics as input and outputs the corresponding radiance value. In our case, we have 

used a MLP. Given below is the architecture implemented. 
 

 

 

 

Step 2: Prepare the training data by collecting a set of images and corresponding camera poses. For this, 

we used the images sent to us by the RadiusAI team and manually had to estimate the camera parameters 

using Structure-from-motion and Multi-View-Stereo consistency from COLMAP. 

Step 3: Train the network. We had conducted training on 136 Images of size 400 ∗ 400 pixels, with a 

batch size of 1024 pixels, over fifty epochs. When trained on a single GPU, it took around 10 minutes to 

train a single epoch. Given below is the training loss measured every epoch. For the first epoch, we make 

the NeRF model focus on the central portion of the image, just to warmup the neural network and get a 

good reconstruction of the important features present in the scene. The first training loss curve decreases 

drastically and then there is a gradual decrease with every epoch. This ensures that the network is training 

well. We had tested this on 34 images and obtained a PSNR of 28.95 and 25.94 db respectively for the 

training and testing data. 



 

 

Initial Loss Curve 
 

 

Training loss curve for the remaining epochs 

 

 

 

 

Step 4: To render novel views of the scene, sample a set of rays that pass through the image plane at the 

desired viewpoint, define the bounds for the scene, perform uniform sampling to find the 3D points of 

interest in the scene geometry, and use the neural network function 𝑓(𝑥; 𝜃) to compute the corresponding 

radiance values. 

Step 5: Color the pixels in the output image using the radiance values computed in Step 4. The figure below 

shows a resulting image from the network, before and after reconstruction. 



 

Input ground truth image 
 

 

Reconstructed Image 

 

 

We also use positional encoding to improve the generated image's quality. In the context of Neural Radiance 

Fields, positional encoding is used to provide the neural network with further information about the 3D 

position of a point in space. 

The basic idea of positional encoding is to add an additional input to the neural network that encodes the 

position of the input point. The approach considered here is to use a sinusoidal function of different 

frequencies and phases to encode the position along each dimension of the input space. The resulting 

encoding is added to the input features and passed through the neural network. When the input to the neural 

network is a 3D point (𝑥, 𝑦, 𝑧), we compute the positional encoding for each dimension. Each dimension 

of the input is encoded by a pair of values, a sine and a cosine term. The frequency of each encoding 

function can be defined as: 



𝑝(𝑥) = (sin (
20𝜋𝑥 

) , cos (
20𝜋𝑥 

) , sin (
21𝜋𝑥

) , cos (
21𝜋𝑥 

) , … , sin (
2𝐿−1𝜋𝑥

) , cos (
2𝐿−1𝜋𝑥

))where 𝑖 ranges 
𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥 

from 0 to 𝐿 − 1 . This means that the frequency of the encoding functions increases exponentially with 𝑖 , 
with the first frequency being 𝑓 = 

1
 . In our experiments, we consider 𝐿 = 10 and 𝑝 = max ||𝑥 ||, 

0 𝑝𝑚𝑎𝑥 
𝑚𝑎𝑥 

𝑖,𝑗 
𝑖,𝑗 

where 𝑥𝑖,𝑗 is the 3D location of a point in the scene, represented as a vector. The final positional encoding 

is the concatenation of all the individual encoding vectors 𝑝(𝑥) for each point in the input set. These are 

then added to the input features of the neural network before passing them through the network. Positional 

encoding allows the neural network to distinguish between points that are close together in space but have 

different radiance values and is an essential component of the NeRF algorithm. 

 

 

Image Generation (Pixel NeRF): 

Pixel NeRF (Neural Radiance Fields) is a deep learning approach used for synthesizing 3D scenes from 2D 

images. It is an extension of the original NeRF algorithm that allows for high-quality rendering of complex 

scenes using only a single image as input. 

The basic idea behind Pixel NeRF is to train a neural network to predict the radiance (or color and 

brightness) of each pixel in an image based on the 3D geometry and appearance of the scene. To do this, 

the network is trained on a dataset of images along with their corresponding 3D scene information, which 

includes camera poses and scene geometry. 

During training, the network learns to predict the radiance of each pixel by estimating the underlying 3D 

scene geometry and appearance that would generate that pixel's color and brightness. Once trained, the 

network can be used to render new views of the scene from any camera pose by simply querying the network 

for the radiance of each pixel in the new image. 

Pixel NeRF has demonstrated impressive results in generating photorealistic 3D scenes from single images, 

and has potential applications in fields such as virtual reality, gaming, and cinematography. 
 

Pixel NeRF output for D2V dataset 



 

Pixel NeRF output for Radius AI dataset 

 

 

One approach to motion blur deblurring is to use deep learning techniques, such as Generative Adversarial 

Networks (GANs). A GAN is a type of neural network that consists of two components: a generator and a 

discriminator. The generator learns to produce realistic images, while the discriminator learns to distinguish 

between real and generated images. 

To train a GAN for motion blur deblurring, a dataset of motion blurred images and their corresponding 

sharp images is required. The generator takes a motion-blurred image as input and generates a sharp image. 

The discriminator is then trained to distinguish between the generated sharp images and the ground-truth 

sharp images. 

The generator is trained to produce sharp images that fool the discriminator into thinking they are real. Over 

time, the generator learns to produce increasingly sharp images, while the discriminator becomes more 

adept at distinguishing between real and generated images. 

Once the GAN is trained, it can be used to deblur motion-blurred images by feeding them into the generator. 

The generator will then produce a sharp image that is as close as possible to the original sharp image that 

was blurred by motion. 
 

Deblur GAN output for DTU dataset 



Model Testing (Pixel NeRF): 

The principle of the Pixel NeRF model has been shown above. And another thing is to find out the 

minimum requirements for efficient and effective use of resources, since there are not so many data for us 

to train. 

The following results show the model test results PSNR (Ratio used to show the image quality, <20 bad, 

20-20 normal, >30 good). And this means that the performance of Pixel NeRF is not good enough when 

only a few objects are used. But the fluctuation of 50 objects result is less than 10 objects result. So, when 

the total amount of training set increases, the result will be relatively better. 

50 objects (15 pictures for each object) 
 

10 objects (15 pictures for each object) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 objects (10 pictures for each object) 

 
 

However, there may be other reasons cause the model performs poorly. The next thing is to continue to 

finish testing Pixel NeRF and try to find out what causes the model to perform poorly in other points. 

 

 

Image Testing (EfficientNetV2): 

EfficientNetV2 is a state-of-the-art deep learning model designed for image classification tasks. It takes the 

concept of efficient architecture design a step further by incorporating various advancements and 

improvements. EfficientNetV2 achieves a balance between model size and performance by using a compound 

scaling method. This approach allows it to achieve better accuracy while maintaining a smaller model size and 

lower computational requirements compared to other models. 

 

 

 



 

Original input is the object image cropped from the real image, and synthetic input is the object image generated 

by the Gan model. Combine these input images with random backgrounds to generate a dataset and put it into 

EfficientNetV2 for training and classification. Vary the ratio of original and synthetic data to test the model's 

classification accuracy. 

Each ratio was tested twice, and the average value was calculated to ensure the reliability of the results. Adding 

a small amount of synthetic data makes the model accuracy drop until the ratio is 7:3. Then the accuracy of the 

model gradually increases as more synthetic data is added. Until the ratio is 4:6 to reach the highest. When the 

ratio is 3:7 and 2:8, the amount of synthetic data accounts for the majority, and the accuracy rate is similar to 

that at the beginning. Therefore, when the ratio of original data to synthetic data is 4:6, it is most helpful for 

model training. 

 

 

Boundary Generation (Diffusion model): 

The diffusion model is a computational framework used in psychology and cognitive science to understand 

decision-making processes. It provides a mathematical description of how information is accumulated and 

integrated over time to make a choice between two or more alternatives. The model is based on the concept 

of diffusion, which refers to the spread or dispersion of particles or molecules from an area of high 

concentration to an area of low concentration. 

In the context of decision-making, the diffusion model assumes that when individuals are faced with a 

choice, they accumulate evidence in favor of different alternatives until they reach a decision threshold. 

The evidence accumulation process is conceptualized as particles diffusing through a decision space. Each 

particle represents a unit of evidence in favor of one of the alternatives, and its movement is influenced by 

noisy fluctuations and external inputs. 

The diffusion model incorporates several key parameters that govern the decision-making process. These 

include the starting point, which represents an individual's initial bias toward one alternative, the drift rate, 

which determines how quickly evidence accumulates for each alternative, and the decision threshold, which 

specifies the amount of evidence required to make a decision. 

One advantage of the diffusion model is its ability to account for response time data and accuracy. By 

analyzing the time taken to make a decision, researchers can gain insights into the underlying cognitive 

processes involved. For example, faster response times may indicate more efficient evidence accumulation, 

while slower response times may suggest increased uncertainty or difficulty in making a decision. 

The diffusion model has been applied to a wide range of decision-making tasks, including perceptual 

judgments, memory retrieval, and economic choices. It has been used to investigate various phenomena 

such as response bias, speed-accuracy trade-offs, and the effects of manipulations or interventions on 

decision-making behavior. 

The model has also been extended and modified to capture more complex decision processes. Variations 

of the diffusion model, such as the drift-diffusion model and the linear ballistic accumulator model, have 



been developed to account for different decision-making scenarios and provide more flexibility in modeling 

behavioral data. 

Overall, the diffusion model offers a valuable framework for understanding decision-making dynamics by 

quantifying the accumulation of evidence and the time course of decision processes. Its mathematical 

formulation provides a precise and testable account of how individuals integrate information over time to 

arrive at a decision, making it a widely used tool in cognitive science research. 
 

In-painting using diffusion is a technique employed to improve the blending of synthetic images with a 

background or to fill in missing portions of an image seamlessly. By leveraging the power of palette-to- 

palette diffusion models, one can effectively address the issue of boundary inconsistencies and create 

visually pleasing compositions. 

Palette-to-palette diffusion models operate by transferring colors and textures from one image region (the 

source palette) to another (the target palette). This diffusion process ensures a smooth transition and enables 

the synthetic image to harmonize with the background more effectively. 

When dealing with synthetic dataset generation, the challenge often lies in achieving a realistic integration 

of the synthetic objects with the background. Due to variations in lighting, textures, and perspectives, 

synthetic images can appear disjointed or out of place. Inpainting using diffusion can be a valuable tool in 

mitigating these issues. 

By applying a palette-to-palette diffusion model, the algorithm analyzes the boundary areas of the synthetic 

objects in the image. It then determines the most appropriate colors and textures from the background image 

to fill in these regions, making the synthetic objects appear more natural and consistent with their 

surroundings. 

The diffusion process takes into account the color and texture similarities between the synthetic object 

boundaries and the surrounding areas in the background image. It ensures a seamless blend by gradually 

transitioning the colors and textures from the background to the synthetic object boundaries. This diffusion 

technique eliminates abrupt edges, smoothes out inconsistencies, and enhances the overall visual coherence 

of the image. 

Inpainting using diffusion can significantly improve the quality of synthetic dataset generation. It allows 

for the creation of more realistic and visually appealing compositions, which can be beneficial in various 

applications such as computer vision, machine learning, and graphics. 

It's worth noting that the effectiveness of inpainting using diffusion depends on the quality and diversity of 

the background images used, as well as the accuracy and robustness of the diffusion model. Adequate 

preprocessing and post-processing techniques, such as noise reduction and edge refinement, can also 

contribute to achieving better results. 

In conclusion, inpainting using diffusion, particularly through palette-to-palette diffusion models, offers a 

powerful approach to blend synthetic images seamlessly with background images. By addressing the 

boundaries of synthetic objects and ensuring a harmonious integration, this technique enhances the realism 

and visual appeal of generated datasets. 



 
 

 

PUGH MATRIX 

 

 

TEST DESIGN 

a) To further test our photorealistic image generation task, we can consider the following plan: 

a. Functional testing: This will involve testing the different approaches we have considered, 

including NeRFs, pixelNeRFs, DCGANs, and pix2pix, to ensure that they can generate 

photorealistic images that can improve the accuracy of object detection models. 

b. Integration testing: We will integrate the different approaches with the baseline classifier and 

test their performance in terms of accuracy, speed, and image quality. This will enable us to 

identify the best approach for our task. 

c. Usability testing: We will test the ease of use of the different approaches and how well they 

can be integrated with the baseline classifier. This will enable us to identify any usability issues 

and improve the user experience. 

d. Performance testing: We will test the performance of the different approaches in terms of 

computational resources required, time taken to generate an image, and accuracy of object 

detection on generated images. This will enable us to identify the most efficient approach for 

our task. 

To verify that our design functions are as intended, we will use several methods to verify that our design 

functions are as intended. First, we will visually inspect the photorealistic images generated by our 

approach and compare them to the ground truth images to see how closely they match. We will also 

evaluate the quality of the images based on criteria such as sharpness, clarity, and realism. 



Second, we will use metrics such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and 

Fréchet Inception Distance (FID) to compare the generated images with the ground truth images 

quantitatively. These metrics will provide objective measures of image quality and help us assess the 

performance of different approaches. 

Third, we will evaluate the accuracy of object detection models using the photorealistic images generated 

by our approach and compare them with the results obtained using the baseline classifier. This will help us 

assess whether our approach improves the accuracy of object detection models. 

Finally, we will conduct user testing to gather feedback on the quality of the photorealistic images generated 

by our approach. This will help us identify areas for improvement and ensure that the images are suitable 

for the intended application. 

Overall, we will use a combination of qualitative and quantitative assessment methods to verify our 

design functions as intended and gain insights into its strengths and limitations. 

 

RESULTS AND ANALYSIS 

EVALUATION OF SYNTHETIC DATA ON BASELINE MODEL 

DATASET v1 
 

syn-GAN-DATASETv1 - Mix of real and GAN generated crops 
 



syn-GAN-DATASETv2 – All GAN generated crops 
 

 

 

EVALUATION MODEL WISE 
 

Dataset -> Model No of Images Synthetic Crops mAP-50 mAP-50-95 

Baseline Dataset V1 1000 No 0.831 0.718 

Baseline Dataset V2 2000 No 0.859 0.768 

syn-GAN-DATASETv1 

[pix2pix GAN] 
2000 Mix 

[Scene-level] 

0.857 0.749 

syn-GAN-DATASETv2 

[pix2pix GAN] 

[Baseline Dataset V2 + syn-GAN- 

DATASETv1] 

4000 Mix 0.882 0.765 

 

 

 

 

 

 

 

 

 

 



EVALUATION CLASS WISE PERFORMANCE 

*highlighted sections show improvement in performance in mAP50 scores on syn-GAN-DATASETv2 

compared to performance on DATASET v2[Baseline] 
 

Class Images Instances mAP50 
Baseline 

mAP50 
syn-GAN- 

DATASETv2 

All 150 495 0.864 0.882 ↑ 

Zenify 150 29 0.984 0.979 

Rubix Cube 150 33 0.995 0.995 

Elephant Keychain 150 26 0.126 0.142 

Arabar 150 42 0.891 0.911 ↑ 

High Protein Loss Bar 150 28 0.721 0.836 ↑ 

Popcorn 150 42 0.778 0.813 ↑ 

Rxbar 150 42 0.995 0.995 

Elan sw/salty mix 150 18 0.995 0.995 

Truly Fruit Punch 150 36 0.962 0.944 

Blk water 150 29 0.97 0.927 

Lego Minifigures 150 51 0.995 0.993 

Edamame Beans 150 33 0.751 0.778 ↑ 

Organic Nutrional Shake 150 43 0.993 0.994 ↑ 

Pistachios 150 9 0.995 0.995 

YumEarth 150 34 0.813 0.934 ↑ 

 

From the table we can visualize that for deformable shapes the augmented dataset has resulted in accuracies 

across the spectrum, whereas the same is not observed for solid shapes and objects. The low accuracy and 

mAP observed for a particular class of “elephant keychain” was further investigated and further base image 

augmentation were performed to improve the accuracy of the object detection model at a class-wise level. 

The following table shows a comprehensive list of experiments performed to improve the accuracy of the 



object detection model on the elephant keychain classifier. 
 

Dataset -> 
Model 

No of Images Synthetic Crops Validation 
Dataset 

Modality 

mAP-50 mAP-50-95 

Baseline 
Dataset/Model 

1000 No RGB 0.831 0.718 

Baseline 
Dataset/Model 

2000 No RGB 0.859 0.768 

syn-GAN- 
DATASETv1 

[pix2pix GAN] 

2000 Mix RGB 0.857 0.749 

syn-GAN- 
DATASETv2 

[pix2pix GAN] 

4000 All RGB 0.882 0.765 

Baseline Dataset 
[Base Image 

Augmentations] 

2000 No RGB 0.821 0.721 

Baseline Dataset 
[Color 

Perturbations] 

2000 No RGB 0.802 0.713 

Baseline Dataset 2000 No Grayscale 0.821 0.727 



 

As an ablation study, we also analysed the performance of the object detection algorithm when the input 

images were in grayscale. The following table summarizes our results: 

 
Class Images Instances mAP50 

Baseline 
mAP50 
GrayScale Test Dataset 

All 150 495 0.864 0.821 

Zenify 150 29 0.984 0.795 

Rubix Cube 150 33 0.995 0.995 

Elephant Keychain 150 26 0.126 0.994 

Arabar 150 42 0.891 0.82 

High Protein Loss Bar 150 28 0.721 0.857 

Popcorn 150 42 0.778 0.854 

Rxbar 150 42 0.995 0.871 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 As is evident, we observe that using grayscale images, the detection accuracy for deformable images has  

drastically improved when compared to the baseline model! 

The experiments performed on grayscale modality showed improved performance for deformable objects 

compared to solid shape objects. The following table shows the results for the model at a class wise level. 

 

SUCCESS CRITERIA 

Some criteria that we think need to be fulfilled for the project to be considered successful are as follows: 

1. Develop and integrate multiple approaches for generating photorealistic images, including NeRFs, 

pixelNeRFs, DCGANs, and pix2pix, and compare their performance with the baseline classifier. 

(required goal - in progress) 

2. Utilize diffusion models to generate higher-quality images and evaluate their performance against 

the other approaches. (stretch goal - pending) 

3. Verify that the generated images are of high quality and suitable for improving object detection 

models' accuracy, using both qualitative and quantitative assessment methods. (required goal - in 

progress) 

Elan sw/salty mix 150 18 0.995 0.944 

Truly Fruit Punch 150 36 0.962 0.751 

Blk water 150 29 0.97 0.813 

Lego Minifigures 150 51 0.995 0.808 

Edamame Beans 150 33 0.751 0.411 

Organic Nutrional Shake 150 43 0.993 0.928 

Pistachios 150 9 0.995 0.641 

YumEarth 150 34 0.813 0.831 



a. Qualitative assessment: Visual inspection of the photorealistic images to ensure that they 

are realistic and of high quality 

b. Quantitative assessment: PSNR, SSIM, and FID can be used to measure the similarity 

between the generated images and the ground truth images. Higher values for these metrics 

indicate better image quality. 

4. Improve the accuracy of object detection models using the photorealistic images generated by the 

different approaches compared to the baseline classifier. (required goal - in progress) 

o Mean Average Precision (mAP): This is a commonly used metric for evaluating the 

accuracy of object detection models. The mAP measures the average precision of the model 

across all object categories. 

o Intersection over Union (IoU): This metric measures the overlap between the predicted 

bounding boxes and the ground truth bounding boxes. Higher values for mAP and IoU 

indicate better object detection accuracy. 

5. Conduct user testing to ensure the photorealistic images suit the intended application to develop 

robust object classifiers. (stretch goal - pending) 

6. Achieve a significant improvement in the accuracy of object detection models using the generated 

images compared to the baseline classifier. (stretch goal - pending) 

7. Ensure that the project is completed within the allocated time and budget. (required goal - in 

progress) 

At this point, the project has made progress toward achieving the required goals. However, some stretch 

goals are pending and may require additional time and resources. To be considered successful, the project 

should significantly improve mAP and IoU using the photorealistic images generated by the different 

approaches compared to the baseline classifier. Additionally, the generated images should be of high quality 

and suitable for improving the accuracy of object detection models, as determined by both qualitative and 

quantitative assessment methods. 

 

IMPACT AND CONSEQUENCES 

1. Privacy: The project may involve handling and processing sensitive data, such as personal 

images, medical records, or identifiable information. Ensuring privacy protection and complying 

with applicable privacy laws and regulations are crucial to safeguarding the privacy of 

individuals. Unauthorized access, misuse, or improper handling of data could lead to breaches of 

privacy and legal consequences. 

2. Data Security: Proper data security measures should be implemented to protect the data used in 

the project. This includes encryption, access controls, secure storage, and secure transmission 

protocols. Inadequate data security can lead to data breaches, identity theft, or unauthorized use 

of personal information. 

3. Informed Consent: If the project involves using images or data from individuals, obtaining 

informed consent is essential. Users or participants should be informed about the purpose of data 

collection, how it will be used, and any potential risks or consequences. Respecting individuals' 

autonomy and privacy rights through informed consent processes is crucial to maintain ethical 

standards. 

4. Patient Confidentiality: In the context of medical image generation, patient confidentiality is of 

utmost importance. Strict adherence to patient confidentiality regulations and guidelines, such as 

the Health Insurance Portability and Accountability Act (HIPAA) in the United States, is 

necessary to protect patients' sensitive medical information. 

5. Bias and Fairness: Care should be taken to ensure that the generated images do not perpetuate 

biases or stereotypes, particularly regarding race, gender, or other sensitive attributes. The 

training data used should be diverse and representative, and algorithms should be designed to 

mitigate bias and promote fairness. 

6. Environmental Impact: The project's computational requirements may consume significant 

energy resources, resulting in an environmental impact. Implementing energy-efficient hardware, 



optimizing algorithms for reduced resource consumption, and considering renewable energy 

sources can help mitigate the environmental footprint of the project. 

7. Intellectual Property: If the project involves using copyrighted images or proprietary data, 

respecting intellectual property rights is essential. Obtaining appropriate permissions or licenses 

and respecting copyright laws are necessary to avoid legal consequences. 

8. Transparency and Accountability: It is important to maintain transparency throughout the project, 

especially in cases where synthetic images are used for deceptive or misleading purposes. Clearly 

communicating the nature of synthetic images and their potential limitations is crucial to avoid 

unethical or misleading uses. 

9. Social Impact: The use of synthetic images can have social implications, such as the potential for 

misuse, misinformation, or deepfakes. Responsible use of technology, raising awareness about 

the existence of synthetic images, and promoting media literacy can help mitigate negative social 

impacts. 
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